2,331 research outputs found

    Temperature chaos in a replica symmetry broken spin glass model - A hierarchical model with temperature chaos -

    Full text link
    Temperature chaos is an extreme sensitivity of the equilibrium state to a change of temperature. It arises in several disordered systems that are described by the so called scaling theory of spin glasses, while it seems to be absent in mean field models. We consider a model spin glass on a tree and show that although it has mean field behavior with replica symmetry breaking, it manifestly has ``strong'' temperature chaos. We also show why chaos appears only very slowly with system size.Comment: 7 pages, 3 figures, the text is slightly change

    Discrete energy landscapes and replica symmetry breaking at zero temperature

    Full text link
    The order parameter P(q) for disordered systems with degenerate ground-states is reconsidered. We propose that entropy fluctuations lead to a trivial P(q) at zero temperature as in the non-degenerate case, even if there are zero-energy large-scale excitations (complex energy landscape). Such a situation should arise in the 3-dimensional +-J Ising spin glass and in MAX-SAT. Also, we argue that if the energy landscape is complex with a finite number of ground-state families, then replica symmetry breaking reappears at positive temperature.Comment: 7 pages; clarifications on valley definition

    Simple strong glass forming models: mean-field solution with activation

    Full text link
    We introduce simple models, inspired by previous models for froths and covalent glasses, with trivial equilibrium properties but dynamical behaviour characteristic of strong glass forming systems. These models are also a generalization of backgammon or urn models to a non--constant number of particles, where entropic barriers are replaced by energy barriers, allowing for the existence of activated processes. We formulate a mean--field version of the models, which keeps most of the features of the finite dimensional ones, and solve analytically the out--of--equilibrium dynamics in the low temperature regime where activation plays an essential role.Comment: 18 pages, 9 figure

    Derivatives and inequalities for order parameters in the Ising spin glass

    Full text link
    Identities and inequalities are proved for the order parameters, correlation functions and their derivatives of the Ising spin glass. The results serve as additional evidence that the ferromagnetic phase is composed of two regions, one with strong ferromagnetic ordering and the other with the effects of disorder dominant. The Nishimori line marks a crossover between these two regions.Comment: 10 pages; 3 figures; new inequalities added, title slightly change

    Tight-binding study of high-pressure phase transitions in titanium: alpha to omega and beyond

    Full text link
    We use a tight-binding total energy method, with parameters determined from a fit to first-principles calculations, to examine the newly discovered gamma phase of titanium. Our parameters were adjusted to accurately describe the alpha Ti-omega Ti phase transition, which is misplaced by density functional calculations. We find a transition from omega Ti to gamma Ti at 102 GPa, in good agreement with the experimental value of 116 GPa. Our results suggest that current density functional calculations will not reproduce the omega Ti-gamma Ti phase transition, but will instead predict a transition from omega Ti to the bcc beta Ti phase.Comment: 3 encapsulated Postscript figures, submitted to Phyical Review Letter

    Local excitations in mean field spin glasses

    Full text link
    We address the question of geometrical as well as energetic properties of local excitations in mean field Ising spin glasses. We study analytically the Random Energy Model and numerically a dilute mean field model, first on tree-like graphs, equivalent to a replica symmetric computation, and then directly on finite connectivity random lattices. In the first model, characterized by a discontinuous replica symmetry breaking, we found that the energy of finite volume excitation is infinite whereas in the dilute mean field model, described by a continuous replica symmetry breaking, it slowly decreases with sizes and saturates at a finite value, in contrast with what would be naively expected. The geometrical properties of these excitations are similar to those of lattice animals or branched polymers. We discuss the meaning of these results in terms of replica symmetry breaking and also possible relevance in finite dimensional systems.Comment: 7 pages, 4 figures, accepted for publicatio

    A ferromagnet with a glass transition

    Full text link
    We introduce a finite-connectivity ferromagnetic model with a three-spin interaction which has a crystalline (ferromagnetic) phase as well as a glass phase. The model is not frustrated, it has a ferromagnetic equilibrium phase at low temperature which is not reached dynamically in a quench from the high-temperature phase. Instead it shows a glass transition which can be studied in detail by a one step replica-symmetry broken calculation. This spin model exhibits the main properties of the structural glass transition at a solvable mean-field level.Comment: 7 pages, 2 figures, uses epl.cls (included

    Glassy states in lattice models with many coexisting crystalline phases

    Full text link
    We study the emergence of glassy states after a sudden cooling in lattice models with short range interactions and without any a priori quenched disorder. The glassy state emerges whenever the equilibrium model possesses a sufficient number of coexisting crystalline phases at low temperatures, provided the thermodynamic limit be taken before the infinite time limit. This result is obtained through simulations of the time relaxation of the standard Potts model and some exclusion models equipped with a local stochastic dynamics on a square lattice.Comment: 12 pages, 4 figure

    J D Bernal: philosophy, politics and the science of science

    Get PDF
    This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position
    corecore